Coin Market Solution logo Coin Market Solution logo
Forklog 2022-11-28 10:33:05

DeepMind научила ИИ-агентов взаимодействовать с людьми

Исследователи лаборатории Deepmind разработали ИИ-агентов, которые могут естественным образом взаимодействовать с людьми и учиться у них. How can AI begin to interact naturally with people?Introducing a new framework where agents can improve their behaviour using human feedback. Tested in a virtual playhouse, agents can listen, ask questions and perform actions in real-time. https://t.co/zw5c9hmSLH pic.twitter.com/irbt6govk8— DeepMind (@DeepMind) November 23, 2022 Для этого разработчики создали интерактивную трехмерную среду, в которой ИИ-агенты и люди свободно перемещались, взаимодействовали и общались в качестве аватаров. Обмен информацией между ними происходил на естественном языке в чате. https://www.youtube.com/watch?v=v_Z9F2_eKk4 В трехмерной среде исследовательская группа также собирала данные о взаимодействии для обучения с подкреплением. Согласно Deepmind, сгенерированный датасет включает 25 лет взаимодействия в реальном времени между агентами и сотнями людей. Для создания продвинутых ИИ-аватаров исследователи скопировали поведение пользователей в виртуальной среде. В противном случае ИИ-агенты действовали бы беспорядочно и непонятным людям образом, рассказали в Deepmind. Затем разработчики оптимизировали поведение с помощью обратной связи с человеком с помощью обучения с подкреплением в соответствии с классическим принципом проб и ошибок. Однако модель вознаграждений они основали на оценке людей способности достижения целей, а не количестве собранных баллов. Затем на основе этих взаимодействий Deepmind натренировала систему поощрений, предсказывающую предпочтения реальных пользователей. Она служила механизмом обратной связи для дальнейшей оптимизации агентов. Процесс обучения ИИ-агентов. Данные: DeepMind. Задания и вопросы для процесса обучения исходили от людей, а также аватаров, имитирующих человека. Согласно Deepmind, их ИИ может решать множество заданий, которые команда ранее не предполагала. Например, они располагали объекты на основе двух чередующихся цветов или приносили пользователям объект, похожий на тот, который они на тот момент держали в руках. При оценке системы ИИ-агенты, расширенные обучением с подкреплением, показали значительно лучший результат, чем натренированные просто имитировать человека. Сравнение производительности людей и ИИ-агентов. Данные: DeepMind. По словам исследователей, процесс обучения можно запускать несколько раз для дальнейшей оптимизации ИИ с помощью обновленной модели вознаграждения. В Deepmind рассматривают представленную структуру как вклад в разработку агентов для видеоигр, которые могут более естественно взаимодействовать с людьми. Фреймворк также поможет в разработке цифровых или роботизированных помощников, считают исследователи. Напомним, в сентябре DeepMind разработала ИИ-агентов, способных играть в виртуальный футбол. Подписывайтесь на новости ForkLog в Telegram: ForkLog AI — все новости из мира ИИ!

면책 조항 읽기 : 본 웹 사이트, 하이퍼 링크 사이트, 관련 응용 프로그램, 포럼, 블로그, 소셜 미디어 계정 및 기타 플랫폼 (이하 "사이트")에 제공된 모든 콘텐츠는 제 3 자 출처에서 구입 한 일반적인 정보 용입니다. 우리는 정확성과 업데이트 성을 포함하여 우리의 콘텐츠와 관련하여 어떠한 종류의 보증도하지 않습니다. 우리가 제공하는 컨텐츠의 어떤 부분도 금융 조언, 법률 자문 또는 기타 용도에 대한 귀하의 특정 신뢰를위한 다른 형태의 조언을 구성하지 않습니다. 당사 콘텐츠의 사용 또는 의존은 전적으로 귀하의 책임과 재량에 달려 있습니다. 당신은 그들에게 의존하기 전에 우리 자신의 연구를 수행하고, 검토하고, 분석하고, 검증해야합니다. 거래는 큰 손실로 이어질 수있는 매우 위험한 활동이므로 결정을 내리기 전에 재무 고문에게 문의하십시오. 본 사이트의 어떠한 콘텐츠도 모집 또는 제공을 목적으로하지 않습니다.